When does trimethylamine N-oxide fold a polymer chain and urea unfold it?
نویسندگان
چکیده
Longstanding mechanistic questions about the role of protecting osmolyte trimethylamine N-oxide (TMAO) that favors protein folding and the denaturing osmolyte urea are addressed by studying their effects on the folding of uncharged polymer chains. Using atomistic molecular dynamics simulations, we show that 1 M TMAO and 7 M urea solutions act dramatically differently on these model polymer chains. Their behaviors are sensitive to the strength of the attractive dispersion interactions of the chain with its environment: when these dispersion interactions are sufficiently strong, TMAO suppresses the formation of extended conformations of the hydrophobic polymer as compared to water while urea promotes the formation of extended conformations. Similar trends are observed experimentally for real protein systems. Quite surprisingly, we find that both protecting and denaturing osmolytes strongly interact with the polymer, seemingly in contrast with existing explanations of the osmolyte effect on proteins. We show that what really matters for a protective osmolyte is its effective depletion as the polymer conformation changes, which leads to a negative change in the preferential binding coefficient. For TMAO, there is a much more favorable free energy of insertion of a single osmolyte near collapsed conformations of the polymer than near extended conformations. By contrast, urea is preferentially stabilized next to the extended conformation and thus has a denaturing effect.
منابع مشابه
When does TMAO fold a polymer chain and urea unfold it?
Longstanding mechanistic questions about the role of protecting osmolyte trimethylamine N oxide (TMAO) which favors protein folding and the denaturing osmolyte urea are addressed by studying their effects on the folding of uncharged polymer chains. Using atomistic molecular dynamics simulations, we show that 1-M TMAO and 7-M urea solutions act dramatically differently on these model polymer cha...
متن کاملIs There any Possible Association Between Trimethylamine N-Oxide (TMAO) and Cancer? A Review Study
Background: During the transit of digested animal source foods, gut microbiota synthesize metabolites that can affect the body cells. One of these metabolites, i.e. Trimethylamine (TMA) that is an intermediary metabolite, ultimately leads to the production of Trimethylamine N-oxide (TMAO). Several studies have been conducted to show the association between TMAO and different diseases. This arti...
متن کاملEffects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex
We systematically investigated effects of molecular crowding with trimethylamine N-oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, t...
متن کاملEffects of organic solvents, methylamines, and urea on the affinity for Pi of the Ca2+-ATPase of sarcoplasmic reticulum.
The Ca2+-ATPase of sarcoplasmic reticulum can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. In a previous report (de Meis, L., Alves, E., and Martins, O.B. (1980) Biochemistry 19, 4252-4261), it was shown that organic solvent such as dimethyl sulfoxide and glycerol cause a decrease in the apparent Km for Pi. In this report it is shown that a simi...
متن کاملWater-mediated interactions between trimethylamine-N-oxide and urea.
The amphiphilic osmolyte trimethylamine-N-oxide (TMAO) is commonly found in natural organisms, where it counteracts biochemical stress associated with urea in aqueous environments. Despite the important role of TMAO as osmoprotectant, the mechanism behind TMAO's action has remained elusive. Here, we study the interaction between urea, TMAO, and water in solution using broadband (100 MHz-1.6 THz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 29 شماره
صفحات -
تاریخ انتشار 2013